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Abstract: - The performance degradation of TCP in wireless and wired-wireless hybrid networks is mostly due 

to lack of its ability to differentiate the packet losses caused by network congestions from the wireless 

transmission losses [17]. In IEEE 802.16 networks, wireless loss can occur due to wireless link errors and when 

the number of bandwidth requests exceeds the maximum. ARQ retransmits the blocks in these two cases 

repeatedly for a specified number of times till the expiry of block life time and drops the block if the 

transmission is not successful. Block life time and Request Retries for bandwidth requests are static parameters 

which are set by the service provider irrespective of the current Round Trip Time, wireless nature and network 

load. TCP has to retransmit the segment when the retransmission timer expires for such losses if the current 

window is small. This paper shows that TCP's throughput gets affected by the static parameters and proposes a 

cross layer feedback approach to enhance TCP-NewReno over IEEE 802.16 networks which can recover from 

such wireless packet losses and react without entering slow-start. The proposed scheme identifies the MAC 

block loss and informs the TCP sender about the loss which in turn resends the lost segment to which the block 

belongs before a time-out. This paper describes the design of the new proposed scheme, TCP-WLAware and 

presents results from experiments carried out using the NS-2 network simulator. The results from the 

simulations show that in a wireless congestion free environment, TCP-WLAware is able to apply TCP-

NewReno's fast recovery at more number of instances than that of the TCP-NewReno without the enhancement 

and hence, recover more number of segments. 
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1 Introduction 
Wireless network technologies have evolved so as 

to provide flexible access to the Internet while 

moving. Wired networks provide the fixed point of 

network attachment, whereas wireless networks 

enable users to access the Internet from any place. 

There have been many attempts to replace the 

Internet access with WLAN and cellular networks. 

With increasing bandwidth, WLANs are 

successfully replacing wired networks in home and 

office environments. Due to the narrow coverage 

and lack of mobility support, however, they are not 

suitable for mobile users. On the other hand, cellular 

networks provide wider coverage and mobility 

support, and thus suitable for mobile users, but the 

communication cost and narrow bandwidth are the 

major obstacles to be widely deployed for the 

Internet access. 

 IEEE 802.16 WMAN technology [1] has been 

proposed to overcome the drawbacks of WLANs 

and cellular networks.  IEEE standard 802.16 was 

designed to evolve as a set of air interfaces based on 

a common MAC protocol but with physical layer 

specifications dependent on the spectrum of use and 

associated regulations.  

The operation of MAC services is connection-

oriented. A connection is defined as a unidirectional 

mapping between BS and SS MAC peers for the 

purpose of transporting a service flow’s traffic [1]. 

A service flow is a unidirectional flow of MAC 

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 437 Issue 12, Volume 11, December 2012



Protocol Data Units (PDUs) with predefined QoS 

parameters. The QoS parameters defined for the 

service flow are therefore implicitly provided by the 

connection’s unique Connection Identifier (CID). In 

order to accommodate applications with different 

service requirements, the standard defines four types 

of MAC scheduling services namely, Unsolicited 

Grant Service (UGS), Real-time Polling Service 

(rtPS), Non-real-time Polling Service (nrtPS) and 

Best Effort (BE). 

The UGS supports real-time uplink service 

flows that transport fixed-size data packets on a 

periodic basis, such as T1/E1 and Voice over IP 

without silence suppression. The rtPS is designed to 

support real-time UL service flows that transport 

variable-size data packets on a periodic basis, such 

as Moving Pictures Experts Group (MPEG) video. 

The nrtPS is designed to support delay-tolerant data 

streams consisting of variable-sized data packets for 

which a minimum data rate is required. The BE 

service is designed to support data streams for 

which no minimum service level is required and 

therefore may be handled on the basis of space 

availability.  

Though, TCP based applications such as web 

browsing, email, FTP are classified as 'best effort', 

TCP's performance is sensitive to delay, jitter and 

packet loss. In a 802.16 network, where 

heterogeneous services and applications co-exist, 

resource allocation for best-effort applications may 

be limited [15] and hence TCP performance 

optimization is a research issue.  

nrtPS and BE use bandwidth contention 

opportunities to send their bandwidth requests (BR). 

Due to link errors or instantaneous wireless network 

traffic, there are possibilities for these requests to be 

dropped after some retries. This leads to the drop of 

the data blocks for which the BR was raised. When 

the BR is successful, BS allocates Data Grant Burst 

Type IE, which is used to send the data block. This 

data block sent can even be dropped due to link 

errors. In both the cases, Automatic Repeat Request 

(ARQ) mechanism of 802.16 retransmits the 

dropped block few times until the expiry of 

ARQ_BLOCK_LIFETIME, and if the same 

condition persists, may give up the transmission.  

The objective of this paper is to identify such 

drops and inform TCP sender to resend the block, 

which otherwise would have retransmitted the 

segment either after a time-out (TO) or triple 

duplicate acknowledgments (DUPACK). In this 

case, TCP would have considered TO or triple 

DUPACK as an indication of congestion and takes 

congestion recovery measures unnecessarily. 

The rest of this paper is organized as follows. In 

Section II, we summarize IEEE 802.16 standard and 

present the motivation behind this work. Section III 

describes the TCP-WLAware mechanism. In 

Section IV, experimental results are presented and 

the efficiency of the scheme is compared with that 

of TCP-NewReno. We conclude the paper in 

Section V with a summary of the results and 

highlights of the future work. 

 

 

2 Background and Motivation 
2.1 TCP -NewReno  
Reno TCP data sender retransmits a packet after a 

retransmit timeout has occurred, or after three 

duplicate acknowledgments have arrived triggering 

the Fast Retransmit algorithm [14].  A single 

retransmit time-out might result in the 

retransmission of several data packets, but each 

invocation of the Reno Fast Retransmit algorithm 

leads to the retransmission of only a single data 

packet. 

In the case of multiple packets dropped from a 

single window of data, the first new information 

available to the sender comes when the sender 

receives an acknowledgment for the retransmitted 

packet. If there is a single packet drop and no 

reordering, then the acknowledgment for this packet 

will acknowledge all those packets transmitted 

before Fast Retransmit was entered.  

However, if there are multiple packet drops, 

then the acknowledgment for the retransmitted 

packet will acknowledge some but not all the 

packets transmitted before the Fast Retransmit and 

this acknowledgment is termed as partial 

acknowledgment. TCP-NewReno provides an 

algorithm for responding to partial 

acknowledgments [13]. 

NewReno includes a small change to the Reno 

algorithm at the sender that eliminates Reno's wait 

for a retransmit timer when multiple packets are lost 

from a window.  In Reno, partial ACKs take TCP 

out of Fast Recovery by “deflating” the usable 

window back to the size of the congestion window 

(cwnd). In New-Reno, partial ACKs do not take 

TCP out of Fast Recovery; instead, partial ACKs 

received during Fast Recovery are treated as an 

indication that the packet immediately following the 

acknowledged packet in the sequence space has 

been lost, and should be retransmitted. Thus, when 

multiple packets are lost from a single window of 

data, New-Reno can recover without a 

retransmission timeout, retransmitting one lost 

packet per round-trip time until all the lost packets 
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from that window have been retransmitted. New-

Reno remains in Fast Recovery until all of the data 

outstanding when Fast Recovery was initiated has 

been acknowledged. 

Slow and steady variant of NewReno will reset 

the retransmission timer after each partial 

acknowledgment and retransmit the first segment. 

Hence, this variant will take N round trip times to 

recover N lost segments. Impatient variant of 

NewReno resets the retransmit timer only after the 

first partial ACK. In this case, if a large number of 

packets were dropped from a window of data, the 

TCP data sender’s retransmit timer will ultimately 

expire, and the TCP data sender will invoke slow-

start. 

In IEEE 802.16 networks, when ARQ is 

enabled, a MAC SDU is logically partitioned into 

blocks. A MAC PDU may contain blocks that are 

transmitted for the first time as well as those being 

retransmitted. When a MAC PDU is dropped, the 

blocks present in the PDU, which may belong to 

different TCP segments, are dropped. Multiple 

packet drops due to errors are quite often possible in 

802.16 networks. TCP-NewReno is an ideal option. 

But due to wireless losses, the size of the congestion 

window may not be enough to trigger fast recovery. 

Every time there is a TO, RTO gets doubled. Then 

to recover from occasional wired-loss, TCP sender 

needs to wait for a larger RTO. This may sometime 

leads to TCP disconnection.  

 

 

2.2 Overview of IEEE 802.16  
When a customer subscribes to the WiMAX service, 

has to provide the service provider the service flow 

information including the number of 

Uplink/Downlink (UL/DL) connections with the 

data rates and QoS parameters along with the kind 

of applications, he or she intends to run. The service 

provider will pre-provision the services by entering 

the service flow information into the Service Flow 

database [7].  

When the Subscriber Station (SS) enters into the 

vicinity of the Base Station (BS) by completing the 

network entry and authentication procedure, the BS 

will download the service flow information from the 

Service Flow Database. When the SS registers with 

the BS by sending Registration Request (REG-

REQ) message, the BS will be able to find the 

service flow information that has been pre-

provisioned by using the MAC address of the SS. 

The BS will then use a Dynamic Service Addition 

(DSA) message to create service flows with the pre-

provisioned service flow information. The service 

flows will then be available for the customer to send 

data traffic [7]. 

In IEEE 802.16 networks, a bandwidth 

request/grant mechanism is employed to acquire 

bandwidth for BE and nrtPS traffic. This mechanism 

is used for reducing data collision. When an SS has 

information to send and wants to enter the 

contention resolution process, it sets its internal 

backoff window equal to the request backoff start 

defined in the Uplink Channel Descriptor (UCD) 

message currently in effect.  

The SS shall randomly select a number within 

its backoff window. This random value indicates the 

number of contention transmission opportunities 

that the SS shall defer before transmitting. These are 

defined by Request IEs in the UL-MAP messages.  

After a contention transmission, the SS waits for 

a Data Grant Burst Type IE in a subsequent map. 

Once received, the contention resolution is 

complete. 

The SS considers the contention transmission 

lost, if no data grant has been received in the 

number of subsequent Uplink map (UL-MAP) 

messages specified by the Contention-Based 

Reservation Timeout parameter. The SS now 

increases its backoff window by a factor of two, as 

long as it is less than the maximum backoff window. 

The SS randomly selects a number within its new 

backoff window and repeats the deferring process.  

This retry process continues until the maximum 

number (request retries for Bandwidth Requests BR) 

of retries has been reached. At this time, the PDU 

shall be discarded [1]. If this request retries is very 

large, the connection queue may overflow.  

802.16 provides error free communication by 

supporting ARQ. The ARQ is a control mechanism 

of data link layer where the receiver asks the 

transmitter to send again a block of data when errors 

are detected. The ARQ mechanism is based on 

acknowledgment (ACK) or non-acknowledgment 

(NACK) messages transmitted by the receiver to the 

transmitter to indicate a good (ACK) or a bad 

(NACK) reception of the previous frames. 

ARQ maintains the following parameters [1]: 

ARQ_RETRY_TIMEOUT is the minimum time 

interval a transmitter shall wait before 

retransmission of the unacknowledged block. The 

interval starts when the ARQ block was last 

transmitted.  

ARQ_BLOCK_LIFETIME is the maximum time 

interval an ARQ block shall be managed by the 

ARQ transmitter state machine, once the initial 

transmission of the block has occurred. This is 

normally maintained as ARQ_RETRY_TIMEOUT 

* ARQ_RETRY_COUNT. If transmission of the 
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block is not acknowledged by the receiver before 

the time limit is reached, the block is discarded. 

Normally one timer is maintained which goes off 

every ARQ_RETRY _TIMEOUT. Blocks which are 

not acknowledged are resent. This will be repeated 

for a maximum retry count. 

ARQ_RX_PURGE_TIMEOUT is the time interval 

the receiver shall wait after successful reception of a 

block that does not result in advancement of 

ARQ_RX_WINDOW_START, before advancing 

ARQ_RX_WINDOW_START. 

ARQ transmission block state sequence [1] is 

shown in Fig .1. 

 

Fig.1 ARQ TX block state sequence 

ARQ_BLOCK_LIFETIME is a crucial 

parameter which affects the upper layer’s 

throughput. This parameter cannot be set to infinity 

as only finite delays and buffer sizes can be afforded 

in practice. TCP is designed to ensure reliable end-

to-end transmission. TCP's performance is mainly 

determined by Round Trip Time (RTT) and loss 

rate. The RTT in the uplink direction is  

{ } { }(max | ( ) max | ( ) ) ( )
i i ack ack

notsent arq wire wire notsent arqRTT T i B j T i B j T T T T= ∈ + ∈ + + + +

     --(1) 

where, 

is the duration for which the block 

resides in notsent state. 

 is the set of blocks that belongs to TCP 

segment, j. 

is the duration for which block is 

maintained by ARQ transmitter before  successful 

transmission. 

 is the wired network delay.  

  is the duration in which the from 

receiver resides in the notsent state. 

 is the duration for which the block carrying 

block is maintained by   ARQ transmitter 

before successful transmission. 

When ARQ is enabled, a MAC SDU (an IP 

packet containing TCP segment) is sent as a set of 

ARQ blocks. The blocks may be carried in different 

MAC frames as per the bandwidth allotment.   At 

the base station all the blocks are packed and then 

sent in the direction of the destination. Each block 

of the SDU will stay / maintained in notsent / by 

ARQ transmitter state chart for different periods of 

time. Hence, the maximum of them is considered in 

(1). 

A MAC PDU drop results in the retransmission 

of a set of blocks. Any new block, i (as the result of 

a new TCP segment, j), will get a chance for 

transmission only after any such retransmissions. In 

this case there will be a raise in   . After 

sending once, if the block is dropped due to error or 

if there is a delay in bandwidth allocation   

will increase. 

If all the blocks of the new TCP segment were 

transmitted within the ARQ_BLOCK_LIFETIME 

and if the TCP sender could receive an ACK for that 

segment before a time-out or 3 DUPACKs, the 

increased  and/or will in turn slightly 

increase RTT. If all blocks were sent by the SS and 

the ACK is not received within RTO or 3 

DUPACK, TCP will spuriously retransmit either 

after a time-out or 3 DUPACKs. In either case, 

cwnd will decrease, which reduces the TCP's 

goodput.  

If any block is not sent within the lifetime, will 

cause the remaining blocks of the MAC SDU to be 

dropped which will cause TCP to retransmit the 

corresponding segment after a time-out.  

Hence, a drop will affect the transmission of the 

subsequent blocks. Even though ARQ associated 

delays scales only sub-linearly, a sudden increase in 

and/or  for any block will reduce the 

TCP's performance. [18] has presented measurement 

results from  an early commercial deployment of a 

WiMAX-based  broadband wireless access network. 

The authors have specified that many 

retransmissions occur in pairs and are two different 

segments, which are caused by real segment loss 

and not by delay variations due to ARQ. Actually 

the drop could be due to the delay caused by ARQ 

in transmitting the previous blocks.  

This paper has studied the performance of one 

FTP connection over 802.16 by varying the network 

load. We have made use of Qualnet 4.5 evaluation 

copy to construct 802.16 network with one cell and 
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modeled the wireless channel with Rayleigh fading. 

The frame structure has 5ms frame length, 10MHz 

bandwidth with 1024 FFT. The transport protocol 

chosen is TCP-NewReno and the maximum 

segment size chosen is 512 bytes. In this work, we 

present results based on a terminating simulation 

with a fixed simulation time.  

Setting larger ARQ_BLOCK_LIFETIME 

doesn't improve the FTP throughput. The simulation 

also shows that FTP throughput gets maximized at 

different ARQ_BLOCK_LIFETIME value for 

different loads as shown in Fig.2 and Fig.3 

 

Fig.2 FTP throughput Vs ARQ_BLOCK_LIFETIME 

when no other load is present 

 

Fig.3 FTP throughput Vs ARQ_BLOCK_LIFETIME 

when 10 CBR traffic connections are active 

 

Hence, ARQ parameters need to be adjusted 

dynamically based on the current network condition, 

load, and RTT to improve the performance of TCP 

or the loss due to wireless error need to be recovered 

before TCP recovers the lost segment by applying 

congestion recovery procedure. 

 

2.3 Related work 
Several schemes ([11], [22], [8]) have been 

proposed to alleviate the effects of non-congestion 

related losses on TCP performance in error prone 

wireless networks. 

The base for all such works is Explicit Loss 

Notification proposed in [22]. This scheme provides 

a way by which senders can be informed that a loss 

happened because of reasons unrelated to network 

congestion so that sender retransmissions can be 

decoupled from congestion control. This 

information is indicated by the BS in ACK segments 

arriving from the receiver. Even though the loss has 

happened in the wireless hop, this loss information 

has to wait till there is an ACK from the receiver 

specifying that this missing segment is expected. 

The chance for entering slow start remains the same 

as that of the TCP without ELN.  

In Link-Layer-originated Explicit Link Status 

Notification (LL-ELSN) scheme [8], BS sends 

Explicit Retransmission Start Notification (ERSN) 

to the TCP sender when the first transmission 

attempt fails for a packet. Upon reception of ERSN, 

the TCP sender neither invokes congestion control 

due to the packet nor retransmits it.  When the 

packet is discarded by the station, Explicit Loss 

Notification (ELN) message is sent. On receiving 

ELN, the sender retransmits the missing segment. 

LL-ELSN uses the SACK information to recover 

multiple losses. To investigate the performance of 

the scheme, 802.11b  is used as the link layer.  But 

in [4] authors have shown using simulations that 

SACK consumes more computational energy in all 

packet loss situations than New-Reno in MANETs. 

Processing the feedback from MAC will worsen the 

computational energy as TCP has to maintain and 

process the states of the various segments. 

Moreover, the author has not mentioned about the 

handling of RTT measurement, when active for the 

lost packet.  

Many researchers have presented various 

approaches to improve the performance of TCP over 

802.16 networks. 

In [5], the authors propose an ACK Unifier and 

an extractor, to reduce the drop rate or delay of the 

ACK packet between MS and SS. When a TCP 

ACK reaches MAC, the unifier searches for the 

TCP packet with payload and copies the ACK 

information to the selected packet and discards the 

ACK packet.  Extractor at the other end reconstructs 

the ACK packet and sends it. Both the ends need to 

calculate the checksum. However, when duplicate 

ACK are unified, it is not possible to extract the 

actual number of duplicates. Then invoking fast 

recovery for the lost segment will not be possible. 

A new transmission scheme, where the ACK 

packets are combined with Bandwidth Request (BR) 

header is proposed by the authors in [6]. This 
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scheme cannot be used during piggybacked ACK on 

data segment. 

In another related work [9], authors proposed a 

new scheme where, feedback about the channel state 

is sent to the TCP, which then adaptively control 

packet size, packet amount and retransmission 

decision (Jin 2008). The channel state is measured 

in terms bit error rate. 

Oleg G Ivanov et al. has suggested that an 

adaptive ARQ is required for WiMAX networks in 

[12]. Similarly, in [3] authors have shown that frame 

duration, direction of flow, DL:UL ratio, MCS and 

offered load affect the performance of TCP. 

Through simulations [21] has revealed that ARQ 

and its configuration play an important role in data 

transmission. They have not specified about the 

effect of the static parameters.  

The proposed scheme modifies TCP-NewReno 

to recover multiple losses. TCP-NewReno can be 

applied to connections that are unable to use the 

TCP -SACK option [13]. Our work is motivated by 

previous studies that indicate TCP-NewReno is the 

widely deployed non-SACK loss recovery strategy 

in Internet [10]. 

 

 

3 TCP-WLAware  
It is clear that an efficient mechanism is required to 

improve the performance of TCP irrespective of the 

chosen MAC layer parameters and RTT. TCP-

WLAware is one such novel scheme which 

enhances TCP-NewReno by providing a feedback 

about the loss by exploiting cross layer design. This 

design violates the layered architecture by creating 

new upward interface [16] to send the sequence 

number of the lost segment to TCP at runtime. 

An ARQ block may be dropped due to either 

repeated link errors and/or expiry of the request 

retries for Bandwidth Requests. 

IEEE 802.16 document specifies that a Discard 

message shall be sent following violation of 

ARQ_BLOCK_LIFETIME. The message may be sent 

immediately or may be delayed up to 
ARQ_RX_PURGE_TIMEOUT + ARQ_RETRY_TIMEOUT. 
When a discard message is received from the 

transmitter, the receiver shall discard the specified 

blocks, advance ARQ_RX_WINDOW_START to the 

Block Sequence Number (BSN) of the first block 

not yet received after the BSN provided in the 

Discard message, and mark all not received blocks 

in the interval from the previous to the new 

ARQ_RX_WINDOW_START values as received for 

ARQ Feedback IE reporting [1]. On receiving ARQ 

Feedback IE, transmitter sets ARQ_TX_NEXT_BSN to 

the new block number to be sent.  

Delaying the Discard message by 
ARQ_RX_PURGE_TIMEOUT+ARQ_RETRY_TIMEOUT 
will cause unnecessary delay and requires a timer to 

run for each block, which is costly. 

TCP-WLAware sends the Discard message as 

soon as the ARQ_BLOCK_LIFETIME expires. The 

ARQ_BLOCK_LIFETIME may expire between the 

arrival of block at the receiver and its ARQ 

feedback at the transmitter. When the discard 

message is sent immediately, the feedback from the 

receiver will not convey as to whether the block is 

really discarded or not As TCP-WLAware need to 

send a feedback to TCP sender about the loss, first it 

has to confirm the loss. This paper defines a new 

ACK type, referred to as Selective NACK which can 

be sent after receiving a discard message when the 

block is really discarded. ARQ feedback IE with 

this new type can be sent.  

When a discard message is received, the 

receiver checks if the block is already received. If 

so, the receiver sends ARQ_FEEDBACK_IE with 

selective ACK. Otherwise, ARQ receiver removes 

the received other fragments of the SDU from the 

queue and then sends a NACK of type 5 to confirm 

the discarding which is shown in Table 1. The 

modified ARQ TX block state sequence is shown in 

Fig 4. 

 

Table 1  ARQ feedback IE format with the added 

new type 

 

Syntax Size 

(bits) 

Notes 

ARQ_Feedback

_IE(LAST) { 

variab

le 

 

 CID 16 The ID of the 

connection being 

referenced 

 LAST 1 0 – More ARQ 

Feedback IE in the list 

1 – Last ARQ Feedback 

IE in the list 

 ACK Type 3 0x0 – Selective ACK 

entry 

0x1 – Cumulative ACK 

entry 

0x2 – Cumulative with 

Selective ACK entry 

0x3 – Cumulative ACK 

with Block Sequence 

ACK entry 

0x5 – Selective NACK 

entry 
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Fig.4 Modified ARQ TX block state sequence 

 

On receiving NACK of type 5, the MAC sender 

sends a feedback to the TCP sender. For uplink 

traffic, the TCP sender is in the local host and for 

downlink traffic, TCP sender in located in the actual 

source host. The feedback contains two fields, 

arq_retransmit, and arq_seq_. arq_retransmit is a 

flag that indicates the segment loss and arq_seq_ 

holds the sequence number of the lost segment. 

TCP-WLAware uses the reserved bits and sequence 

number fields present in the TCP header to convey 

the feedback. 

TCP sender then enters MAC drop recovery 

procedure. The modifications to the TCP-NewReno 

algorithm at the various steps are: 

1. If the received packet contains an indication that 

a packet is dropped by the MAC layer and if the 

sequence number is greater than last received 

acknowledgment, store the sequence number of 

the dropped packet in “arq_recover_list_” and 

the current instance of time in 

“arq_recover_time_list” and resend the 

segment lost. If RTT measurement is active for 

this segment, disable it. Reset the retransmission 

timer.  

2. When invoking fast retransmit for any of the 

packets in the arq_recover_list_, all the 

duplicate acknowledgments must have arrived 

after the respective arq_recover_time_list + rtt. 

When all such duplicates have been received, 

remove the segment from the arq_recover_list_ 

and then invoke fast retransmit. 

3. When a full ACK arrives, that acknowledges 

new data, clear the entries in 

arq_recover_time_list and arq_recover_list_ 

that are covered by the new acknowledgment 

and exit the MAC drop recovery procedure,  if 

the list is empty. 

4. When a partial acknowledgment is received, 

remove the entries in the arq_recover_time_list 

and arq_recover_list_ that are covered by this 

acknowledgment and   invoke the partial 

acknowledgment procedure, only if the first 

unacknowledged segment is not in the 

arq_recover_list_. 

5. After a retransmit timeout, if the sender is in the 

MAC drop recovery procedure, exit clearing 

arq_recover_list_& arq_recover_time_list. 
 

 

4 Simulation Results 
We used NS-2 WiMAX Simulator Release 2.6 

provided by the WiMAX forum [20] to construct a 

WiMAX network with one cell. This version tries to 

send a block, infinite number of times and hence no 

discards. To minimize delay and buffer sizes, 

truncated ARQ has been adapted in practice. Hence 

we extended the simulator by making the MAC 

layer to drop the block after the violation of 

ARQ_BLOCK_LIFETIME. Instead of modelling 

WiMAX's timer based ARQ retransmission 

management, we considered a maximal 

retransmission count, arq_max_retries. This paper 

studies the change in the congestion window (cwnd) 

size, as cwnd indicates if fast recovery is applied. 

The parameters used in the simulation are reported 

in Table 2 and the simulation topology is shown in 

Fig.5. 

Fig. 5 Simulation topology 

CASE 1: TCP -NewReno / TCP-WLAware 

without wired errors 
First we observed the change in cwnd with time 

with TCP-NewReno as the sender agent. The 

variation of cwnd is shown in Fig.6. There are no 

drops in the wired network and wireless loss model 

uses a uniform distribution with an error rate of 0.15 

to randomly drop packets. There had been only one 

instance of evoking NewReno's fast recovery in the 

total duration of 170 sec. Initially, when the cwnd is 

small, the loss of segments 0, 2, and 3 causes time-

out and TCP enters slow-start. 
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Table 2 Simulation parameters 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 The variation of cwnd over time 

Fig. 7 shows the segments sent and lost during 

the simulation period. At 39.75 sec, segments 36 

through 38 were dropped. These segments were all 

sent in one physical frame and was dropped once 

due to error. After the ARQ retransmission time 

expires, MAC puts them in the retransmission 

queue. Before getting a chance for transmission, 

these blocks were dropped due to the expiry of 

retransmission count.  At 43.24 sec, the loss of 

segment 36 causes TCP to enter fast recovery as the 

window at that point of time is positioned at 8. As 

the segments 37 and 38 were also dropped at the 

same time, TCP recovers the lost segments one per 

rtt applying NewReno. At 45.75 sec, segment 47 

was dropped. As the cwnd was 4, there were enough 

duplicate ACKs, fast recovery was evoked. At 63.48 

sec, TCP enters slow-start as the segments 62-66 

were dropped. As large number of segments in a 

row was dropped, enough duplicates were not there 

to trigger fast recovery. 

This can frequently happen in 802.16 networks 

as blocks from different segments may be packed in 

one MAC PDU. The same scenario has happened at 

139.40 sec and 162.68 sec. 

Secondly, we observed that there was a change 

in cwnd, when TCP-NewReno with WLAware is 

chosen as the agent. In this case , whenever there is 

a block drop, ARQ identifies and informs the loss to 

TCP.  So the congestion window grows which 

maximizes the throughput. The variation of cwnd in 

this case is shown in Fig. 8.  

 

CASE 2: TCP -NewReno /TCP-WLAware 

with wired errors 
Then we introduced packet loss in the wired 

network and studied the variation in congestion 

window with TCP-NewReno as the agent. The 

wired loss model uses uniform distribution with 

packet loss rate of 0.1. Fig.9 shows the variation 

 Fig. 7 Sequence number of the segments sent with 

the lost segments 

of cwnd when WLAware is not enabled and with 

wired errors. Due to wireless losses, sender often 

enters slow-start. Under these conditions, when a 

segment is lost due to congestion or error in the 

wired infrastructure, there won’t be enough 

duplicates to trigger fast retransmission.  So time-

out is the option for retransmission in most 

situations.  

Segments 8, 9 and 10 were sent in one MAC 

frame and dropped due to error at 68.07 sec. Before 

they get a chance for retransmission, they were 

dropped due to the expiry of retry count. The 

congestion window at that time was 3 and as all the 

three segments were dropped, there were no 

duplicates to trigger NewReno. Hence, the cwnd 

drops down to 1. At 138.44 sec, segment 59 was 

Parameter Value 

Frame duration 

packet_size  

arq_block_size_   

arq_max_retries  

arq_retrans_time 

5ms  

128 bytes 

32 bytes 

7  

80 ms 

PHY 

Bandwidth 

FFT 

Cyclic Prefix length  

Modulation and coding 

OFDMA 

10MHz 

1024 

1/4 

QPSK ¾ 

bw_req_contention_size_ 

request_retry_ 

t16_timeout_ 

5 

2 

100ms 

TCP Version 

Delayed ACK factor 

NewReno variant 

NewReno 

1 

slow-but-steady 
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dropped in the wired network. At 139.75 sec, 

segments 60, 61 were dropped in the wireless hop. 

As the cwnd size at that point of time was 3, there 

were no outstanding segments to trigger fast 

recovery.  

 

Fig. 8 Variation in cwnd when TCP-WLAware is 

enabled. 

At 157.75 sec, segment 88 was dropped in the 

wireless hop. At 159.20 sec, wired network dropped 

segment 91. As the cwnd size was 8, TCP could 

recover segments 88 and 99 by applying NewReno's 

fast recovery. This is the only instance when 

NewReno could be applied during the simulation 

period. 

 

Fig.9 Change in congestion window with wired loss 

when WLAware is not enabled 

Then, we studied the performance of TCP-

WLAware in the presence of wired errors. TCP 

recovers from all wireless losses and allows the 

congestion window to grow. This growth allows 

NewReno to be applied for wired losses. The 

variation in congestion window is shown in Fig.10. 

Wireless drops do not make any alteration to the 

cwnd. 

TCP-WLAware facilitates NewReno to be 

applied 4 times. At 133.261 sec, 3 DUPACKs were 

received for 123 and TCP applies fast recovery and 

recovers 123. TCP remains in fast recovery and 

receives partial ACK for 127. This triggers 

NewReno's fast recovery so as to recover 127. 

NewReno's fast recovery is also applied to recover 

segments 138, 162, and, 204 in a similar fashion. 

 Fig.10 Variation in the cwnd with wired and 

wireless errors when WLAware is enabled 

All the other dips in Fig.10 depict the normal 

behavior of NewReno. At 25.67 sec, segment 9 

dropped in the wired hop and hence the cwnd is set 

to 1. Similarly, loss of segments 73 and 78 causes 

slow-start. In these cases, the congestion window 

size was less than 2. 

At 161.69 sec, segments 173-177 were dropped 

in the wireless hop and were transmitted by resetting 

the retransmission timer. Segment 174 was dropped 

again in the wired hop. TCP-WLAware considers 

the duplicates arriving after the transmission of the 

lost segment. Even though the cwnd is greater than 

4, as there are no enough duplicates to trigger 

NewReno, slow-start begins. The same scenario has 

got repeated when segments 26, 59, and 68 were 

dropped.  

The losses in the wireless hop were recovered 

immediately without delay and the efficiency of 

NewReno is only dependent on the wired errors. 

TCP -WLAware allows NewReno to be applied 

in all possible wired loss scenarios by hiding the 

wireless losses. Hence, the average number of 

packets sent by TCP-WLAware will be more than 

that of the TCP-NewReno. 

 

 

5 Conclusion 
In this paper, we have measured the throughput of 

one FTP connection at various network loads and 
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found that the maximum throughput is achieved at 

different ARQ_BLOCK_LIFETIME for each 

network load. Making this parameter static may 

cause TCP to spuriously retransmit or time-out 

often. This paper has proposed a new cross layer 

feedback mechanism, which identifies wireless 

losses and inform TCP. TCP recovers such losses 

immediately, which normally would lead to slow-

start. This work has presumed that there is no 

congestion within the wireless network, and hence 

the drops are only due to errors. This work can be 

extended by considering the wireless drops due to 

congestion. Our future research is to improve TCP-

WLAware to distinguish wireless congestion losses 

from losses caused by errors. If the loss is due to 

congestion, then congestion control measures need 

to taken.  
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