
TCP-WLAware: Wireless Loss-Aware TCP for IEEE 802.16 Networks

1
K. SAKTHI MALA and

2
P .NAVANEETHAN

1
Department of Computer Technology and Applications,

Coimbatore Institute of Technology

Coimbatore. 641 014.

INDIA.
2
Professor & Head, Department of Electrical and Electronics Engineering,

PSG College of Technology,

Coimbatore 641 004.

INDIA.

E mail:
1
sakthimala@cit.edu.in,

2
pnn@eee.psgtech.ac.in

Abstract: - The performance degradation of TCP in wireless and wired-wireless hybrid networks is mostly due

to lack of its ability to differentiate the packet losses caused by network congestions from the wireless

transmission losses [17]. In IEEE 802.16 networks, wireless loss can occur due to wireless link errors and when

the number of bandwidth requests exceeds the maximum. ARQ retransmits the blocks in these two cases

repeatedly for a specified number of times till the expiry of block life time and drops the block if the

transmission is not successful. Block life time and Request Retries for bandwidth requests are static parameters

which are set by the service provider irrespective of the current Round Trip Time, wireless nature and network

load. TCP has to retransmit the segment when the retransmission timer expires for such losses if the current

window is small. This paper shows that TCP's throughput gets affected by the static parameters and proposes a

cross layer feedback approach to enhance TCP-NewReno over IEEE 802.16 networks which can recover from

such wireless packet losses and react without entering slow-start. The proposed scheme identifies the MAC

block loss and informs the TCP sender about the loss which in turn resends the lost segment to which the block

belongs before a time-out. This paper describes the design of the new proposed scheme, TCP-WLAware and

presents results from experiments carried out using the NS-2 network simulator. The results from the

simulations show that in a wireless congestion free environment, TCP-WLAware is able to apply TCP-

NewReno's fast recovery at more number of instances than that of the TCP-NewReno without the enhancement

and hence, recover more number of segments.

Key-Words: - Transmission Control protocol, TCP-NewReno, MAC, ARQ, Bandwidth requests,

ARQ_BLOCK_LIFETIME, MAC layer feedback

1 Introduction
Wireless network technologies have evolved so as

to provide flexible access to the Internet while

moving. Wired networks provide the fixed point of

network attachment, whereas wireless networks

enable users to access the Internet from any place.

There have been many attempts to replace the

Internet access with WLAN and cellular networks.

With increasing bandwidth, WLANs are

successfully replacing wired networks in home and

office environments. Due to the narrow coverage

and lack of mobility support, however, they are not

suitable for mobile users. On the other hand, cellular

networks provide wider coverage and mobility

support, and thus suitable for mobile users, but the

communication cost and narrow bandwidth are the

major obstacles to be widely deployed for the

Internet access.

 IEEE 802.16 WMAN technology [1] has been

proposed to overcome the drawbacks of WLANs

and cellular networks. IEEE standard 802.16 was

designed to evolve as a set of air interfaces based on

a common MAC protocol but with physical layer

specifications dependent on the spectrum of use and

associated regulations.

The operation of MAC services is connection-

oriented. A connection is defined as a unidirectional

mapping between BS and SS MAC peers for the

purpose of transporting a service flow’s traffic [1].

A service flow is a unidirectional flow of MAC

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 437 Issue 12, Volume 11, December 2012

Protocol Data Units (PDUs) with predefined QoS

parameters. The QoS parameters defined for the

service flow are therefore implicitly provided by the

connection’s unique Connection Identifier (CID). In

order to accommodate applications with different

service requirements, the standard defines four types

of MAC scheduling services namely, Unsolicited

Grant Service (UGS), Real-time Polling Service

(rtPS), Non-real-time Polling Service (nrtPS) and

Best Effort (BE).

The UGS supports real-time uplink service

flows that transport fixed-size data packets on a

periodic basis, such as T1/E1 and Voice over IP

without silence suppression. The rtPS is designed to

support real-time UL service flows that transport

variable-size data packets on a periodic basis, such

as Moving Pictures Experts Group (MPEG) video.

The nrtPS is designed to support delay-tolerant data

streams consisting of variable-sized data packets for

which a minimum data rate is required. The BE

service is designed to support data streams for

which no minimum service level is required and

therefore may be handled on the basis of space

availability.

Though, TCP based applications such as web

browsing, email, FTP are classified as 'best effort',

TCP's performance is sensitive to delay, jitter and

packet loss. In a 802.16 network, where

heterogeneous services and applications co-exist,

resource allocation for best-effort applications may

be limited [15] and hence TCP performance

optimization is a research issue.

nrtPS and BE use bandwidth contention

opportunities to send their bandwidth requests (BR).

Due to link errors or instantaneous wireless network

traffic, there are possibilities for these requests to be

dropped after some retries. This leads to the drop of

the data blocks for which the BR was raised. When

the BR is successful, BS allocates Data Grant Burst

Type IE, which is used to send the data block. This

data block sent can even be dropped due to link

errors. In both the cases, Automatic Repeat Request

(ARQ) mechanism of 802.16 retransmits the

dropped block few times until the expiry of

ARQ_BLOCK_LIFETIME, and if the same

condition persists, may give up the transmission.

The objective of this paper is to identify such

drops and inform TCP sender to resend the block,

which otherwise would have retransmitted the

segment either after a time-out (TO) or triple

duplicate acknowledgments (DUPACK). In this

case, TCP would have considered TO or triple

DUPACK as an indication of congestion and takes

congestion recovery measures unnecessarily.

The rest of this paper is organized as follows. In

Section II, we summarize IEEE 802.16 standard and

present the motivation behind this work. Section III

describes the TCP-WLAware mechanism. In

Section IV, experimental results are presented and

the efficiency of the scheme is compared with that

of TCP-NewReno. We conclude the paper in

Section V with a summary of the results and

highlights of the future work.

2 Background and Motivation
2.1 TCP -NewReno
Reno TCP data sender retransmits a packet after a

retransmit timeout has occurred, or after three

duplicate acknowledgments have arrived triggering

the Fast Retransmit algorithm [14]. A single

retransmit time-out might result in the

retransmission of several data packets, but each

invocation of the Reno Fast Retransmit algorithm

leads to the retransmission of only a single data

packet.

In the case of multiple packets dropped from a

single window of data, the first new information

available to the sender comes when the sender

receives an acknowledgment for the retransmitted

packet. If there is a single packet drop and no

reordering, then the acknowledgment for this packet

will acknowledge all those packets transmitted

before Fast Retransmit was entered.

However, if there are multiple packet drops,

then the acknowledgment for the retransmitted

packet will acknowledge some but not all the

packets transmitted before the Fast Retransmit and

this acknowledgment is termed as partial

acknowledgment. TCP-NewReno provides an

algorithm for responding to partial

acknowledgments [13].

NewReno includes a small change to the Reno

algorithm at the sender that eliminates Reno's wait

for a retransmit timer when multiple packets are lost

from a window. In Reno, partial ACKs take TCP

out of Fast Recovery by “deflating” the usable

window back to the size of the congestion window

(cwnd). In New-Reno, partial ACKs do not take

TCP out of Fast Recovery; instead, partial ACKs

received during Fast Recovery are treated as an

indication that the packet immediately following the

acknowledged packet in the sequence space has

been lost, and should be retransmitted. Thus, when

multiple packets are lost from a single window of

data, New-Reno can recover without a

retransmission timeout, retransmitting one lost

packet per round-trip time until all the lost packets

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 438 Issue 12, Volume 11, December 2012

from that window have been retransmitted. New-

Reno remains in Fast Recovery until all of the data

outstanding when Fast Recovery was initiated has

been acknowledged.

Slow and steady variant of NewReno will reset

the retransmission timer after each partial

acknowledgment and retransmit the first segment.

Hence, this variant will take N round trip times to

recover N lost segments. Impatient variant of

NewReno resets the retransmit timer only after the

first partial ACK. In this case, if a large number of

packets were dropped from a window of data, the

TCP data sender’s retransmit timer will ultimately

expire, and the TCP data sender will invoke slow-

start.

In IEEE 802.16 networks, when ARQ is

enabled, a MAC SDU is logically partitioned into

blocks. A MAC PDU may contain blocks that are

transmitted for the first time as well as those being

retransmitted. When a MAC PDU is dropped, the

blocks present in the PDU, which may belong to

different TCP segments, are dropped. Multiple

packet drops due to errors are quite often possible in

802.16 networks. TCP-NewReno is an ideal option.

But due to wireless losses, the size of the congestion

window may not be enough to trigger fast recovery.

Every time there is a TO, RTO gets doubled. Then

to recover from occasional wired-loss, TCP sender

needs to wait for a larger RTO. This may sometime

leads to TCP disconnection.

2.2 Overview of IEEE 802.16
When a customer subscribes to the WiMAX service,

has to provide the service provider the service flow

information including the number of

Uplink/Downlink (UL/DL) connections with the

data rates and QoS parameters along with the kind

of applications, he or she intends to run. The service

provider will pre-provision the services by entering

the service flow information into the Service Flow

database [7].

When the Subscriber Station (SS) enters into the

vicinity of the Base Station (BS) by completing the

network entry and authentication procedure, the BS

will download the service flow information from the

Service Flow Database. When the SS registers with

the BS by sending Registration Request (REG-

REQ) message, the BS will be able to find the

service flow information that has been pre-

provisioned by using the MAC address of the SS.

The BS will then use a Dynamic Service Addition

(DSA) message to create service flows with the pre-

provisioned service flow information. The service

flows will then be available for the customer to send

data traffic [7].

In IEEE 802.16 networks, a bandwidth

request/grant mechanism is employed to acquire

bandwidth for BE and nrtPS traffic. This mechanism

is used for reducing data collision. When an SS has

information to send and wants to enter the

contention resolution process, it sets its internal

backoff window equal to the request backoff start

defined in the Uplink Channel Descriptor (UCD)

message currently in effect.

The SS shall randomly select a number within

its backoff window. This random value indicates the

number of contention transmission opportunities

that the SS shall defer before transmitting. These are

defined by Request IEs in the UL-MAP messages.

After a contention transmission, the SS waits for

a Data Grant Burst Type IE in a subsequent map.

Once received, the contention resolution is

complete.

The SS considers the contention transmission

lost, if no data grant has been received in the

number of subsequent Uplink map (UL-MAP)

messages specified by the Contention-Based

Reservation Timeout parameter. The SS now

increases its backoff window by a factor of two, as

long as it is less than the maximum backoff window.

The SS randomly selects a number within its new

backoff window and repeats the deferring process.

This retry process continues until the maximum

number (request retries for Bandwidth Requests BR)

of retries has been reached. At this time, the PDU

shall be discarded [1]. If this request retries is very

large, the connection queue may overflow.

802.16 provides error free communication by

supporting ARQ. The ARQ is a control mechanism

of data link layer where the receiver asks the

transmitter to send again a block of data when errors

are detected. The ARQ mechanism is based on

acknowledgment (ACK) or non-acknowledgment

(NACK) messages transmitted by the receiver to the

transmitter to indicate a good (ACK) or a bad

(NACK) reception of the previous frames.

ARQ maintains the following parameters [1]:

ARQ_RETRY_TIMEOUT is the minimum time

interval a transmitter shall wait before

retransmission of the unacknowledged block. The

interval starts when the ARQ block was last

transmitted.

ARQ_BLOCK_LIFETIME is the maximum time

interval an ARQ block shall be managed by the

ARQ transmitter state machine, once the initial

transmission of the block has occurred. This is

normally maintained as ARQ_RETRY_TIMEOUT

* ARQ_RETRY_COUNT. If transmission of the

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 439 Issue 12, Volume 11, December 2012

block is not acknowledged by the receiver before

the time limit is reached, the block is discarded.

Normally one timer is maintained which goes off

every ARQ_RETRY _TIMEOUT. Blocks which are

not acknowledged are resent. This will be repeated

for a maximum retry count.

ARQ_RX_PURGE_TIMEOUT is the time interval

the receiver shall wait after successful reception of a

block that does not result in advancement of

ARQ_RX_WINDOW_START, before advancing

ARQ_RX_WINDOW_START.

ARQ transmission block state sequence [1] is

shown in Fig .1.

Fig.1 ARQ TX block state sequence

ARQ_BLOCK_LIFETIME is a crucial

parameter which affects the upper layer’s

throughput. This parameter cannot be set to infinity

as only finite delays and buffer sizes can be afforded

in practice. TCP is designed to ensure reliable end-

to-end transmission. TCP's performance is mainly

determined by Round Trip Time (RTT) and loss

rate. The RTT in the uplink direction is

{ } { }(max | () max | ()) ()
i i ack ack

notsent arq wire wire notsent arqRTT T i B j T i B j T T T T= ∈ + ∈ + + + +

 --(1)

where,

is the duration for which the block

resides in notsent state.

 is the set of blocks that belongs to TCP

segment, j.

is the duration for which block is

maintained by ARQ transmitter before successful

transmission.

 is the wired network delay.

 is the duration in which the from

receiver resides in the notsent state.

 is the duration for which the block carrying

block is maintained by ARQ transmitter

before successful transmission.

When ARQ is enabled, a MAC SDU (an IP

packet containing TCP segment) is sent as a set of

ARQ blocks. The blocks may be carried in different

MAC frames as per the bandwidth allotment. At

the base station all the blocks are packed and then

sent in the direction of the destination. Each block

of the SDU will stay / maintained in notsent / by

ARQ transmitter state chart for different periods of

time. Hence, the maximum of them is considered in

(1).

A MAC PDU drop results in the retransmission

of a set of blocks. Any new block, i (as the result of

a new TCP segment, j), will get a chance for

transmission only after any such retransmissions. In

this case there will be a raise in . After

sending once, if the block is dropped due to error or

if there is a delay in bandwidth allocation

will increase.

If all the blocks of the new TCP segment were

transmitted within the ARQ_BLOCK_LIFETIME

and if the TCP sender could receive an ACK for that

segment before a time-out or 3 DUPACKs, the

increased and/or will in turn slightly

increase RTT. If all blocks were sent by the SS and

the ACK is not received within RTO or 3

DUPACK, TCP will spuriously retransmit either

after a time-out or 3 DUPACKs. In either case,

cwnd will decrease, which reduces the TCP's

goodput.

If any block is not sent within the lifetime, will

cause the remaining blocks of the MAC SDU to be

dropped which will cause TCP to retransmit the

corresponding segment after a time-out.

Hence, a drop will affect the transmission of the

subsequent blocks. Even though ARQ associated

delays scales only sub-linearly, a sudden increase in

and/or for any block will reduce the

TCP's performance. [18] has presented measurement

results from an early commercial deployment of a

WiMAX-based broadband wireless access network.

The authors have specified that many

retransmissions occur in pairs and are two different

segments, which are caused by real segment loss

and not by delay variations due to ARQ. Actually

the drop could be due to the delay caused by ARQ

in transmitting the previous blocks.

This paper has studied the performance of one

FTP connection over 802.16 by varying the network

load. We have made use of Qualnet 4.5 evaluation

copy to construct 802.16 network with one cell and

T notsent
i

i
th

()B j

T arq
i

i
th

Twire

T notsent
ack

ACK

T arq
ack

ACK

T notsent
i

T arq
i

T notsent
i

T arq
i

T notsent
i

T arq
i

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 440 Issue 12, Volume 11, December 2012

modeled the wireless channel with Rayleigh fading.

The frame structure has 5ms frame length, 10MHz

bandwidth with 1024 FFT. The transport protocol

chosen is TCP-NewReno and the maximum

segment size chosen is 512 bytes. In this work, we

present results based on a terminating simulation

with a fixed simulation time.

Setting larger ARQ_BLOCK_LIFETIME

doesn't improve the FTP throughput. The simulation

also shows that FTP throughput gets maximized at

different ARQ_BLOCK_LIFETIME value for

different loads as shown in Fig.2 and Fig.3

Fig.2 FTP throughput Vs ARQ_BLOCK_LIFETIME

when no other load is present

Fig.3 FTP throughput Vs ARQ_BLOCK_LIFETIME

when 10 CBR traffic connections are active

Hence, ARQ parameters need to be adjusted

dynamically based on the current network condition,

load, and RTT to improve the performance of TCP

or the loss due to wireless error need to be recovered

before TCP recovers the lost segment by applying

congestion recovery procedure.

2.3 Related work
Several schemes ([11], [22], [8]) have been

proposed to alleviate the effects of non-congestion

related losses on TCP performance in error prone

wireless networks.

The base for all such works is Explicit Loss

Notification proposed in [22]. This scheme provides

a way by which senders can be informed that a loss

happened because of reasons unrelated to network

congestion so that sender retransmissions can be

decoupled from congestion control. This

information is indicated by the BS in ACK segments

arriving from the receiver. Even though the loss has

happened in the wireless hop, this loss information

has to wait till there is an ACK from the receiver

specifying that this missing segment is expected.

The chance for entering slow start remains the same

as that of the TCP without ELN.

In Link-Layer-originated Explicit Link Status

Notification (LL-ELSN) scheme [8], BS sends

Explicit Retransmission Start Notification (ERSN)

to the TCP sender when the first transmission

attempt fails for a packet. Upon reception of ERSN,

the TCP sender neither invokes congestion control

due to the packet nor retransmits it. When the

packet is discarded by the station, Explicit Loss

Notification (ELN) message is sent. On receiving

ELN, the sender retransmits the missing segment.

LL-ELSN uses the SACK information to recover

multiple losses. To investigate the performance of

the scheme, 802.11b is used as the link layer. But

in [4] authors have shown using simulations that

SACK consumes more computational energy in all

packet loss situations than New-Reno in MANETs.

Processing the feedback from MAC will worsen the

computational energy as TCP has to maintain and

process the states of the various segments.

Moreover, the author has not mentioned about the

handling of RTT measurement, when active for the

lost packet.

Many researchers have presented various

approaches to improve the performance of TCP over

802.16 networks.

In [5], the authors propose an ACK Unifier and

an extractor, to reduce the drop rate or delay of the

ACK packet between MS and SS. When a TCP

ACK reaches MAC, the unifier searches for the

TCP packet with payload and copies the ACK

information to the selected packet and discards the

ACK packet. Extractor at the other end reconstructs

the ACK packet and sends it. Both the ends need to

calculate the checksum. However, when duplicate

ACK are unified, it is not possible to extract the

actual number of duplicates. Then invoking fast

recovery for the lost segment will not be possible.

A new transmission scheme, where the ACK

packets are combined with Bandwidth Request (BR)

header is proposed by the authors in [6]. This

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 441 Issue 12, Volume 11, December 2012

scheme cannot be used during piggybacked ACK on

data segment.

In another related work [9], authors proposed a

new scheme where, feedback about the channel state

is sent to the TCP, which then adaptively control

packet size, packet amount and retransmission

decision (Jin 2008). The channel state is measured

in terms bit error rate.

Oleg G Ivanov et al. has suggested that an

adaptive ARQ is required for WiMAX networks in

[12]. Similarly, in [3] authors have shown that frame

duration, direction of flow, DL:UL ratio, MCS and

offered load affect the performance of TCP.

Through simulations [21] has revealed that ARQ

and its configuration play an important role in data

transmission. They have not specified about the

effect of the static parameters.

The proposed scheme modifies TCP-NewReno

to recover multiple losses. TCP-NewReno can be

applied to connections that are unable to use the

TCP -SACK option [13]. Our work is motivated by

previous studies that indicate TCP-NewReno is the

widely deployed non-SACK loss recovery strategy

in Internet [10].

3 TCP-WLAware
It is clear that an efficient mechanism is required to

improve the performance of TCP irrespective of the

chosen MAC layer parameters and RTT. TCP-

WLAware is one such novel scheme which

enhances TCP-NewReno by providing a feedback

about the loss by exploiting cross layer design. This

design violates the layered architecture by creating

new upward interface [16] to send the sequence

number of the lost segment to TCP at runtime.

An ARQ block may be dropped due to either

repeated link errors and/or expiry of the request

retries for Bandwidth Requests.

IEEE 802.16 document specifies that a Discard

message shall be sent following violation of

ARQ_BLOCK_LIFETIME. The message may be sent

immediately or may be delayed up to
ARQ_RX_PURGE_TIMEOUT + ARQ_RETRY_TIMEOUT.
When a discard message is received from the

transmitter, the receiver shall discard the specified

blocks, advance ARQ_RX_WINDOW_START to the

Block Sequence Number (BSN) of the first block

not yet received after the BSN provided in the

Discard message, and mark all not received blocks

in the interval from the previous to the new

ARQ_RX_WINDOW_START values as received for

ARQ Feedback IE reporting [1]. On receiving ARQ

Feedback IE, transmitter sets ARQ_TX_NEXT_BSN to

the new block number to be sent.

Delaying the Discard message by
ARQ_RX_PURGE_TIMEOUT+ARQ_RETRY_TIMEOUT
will cause unnecessary delay and requires a timer to

run for each block, which is costly.

TCP-WLAware sends the Discard message as

soon as the ARQ_BLOCK_LIFETIME expires. The

ARQ_BLOCK_LIFETIME may expire between the

arrival of block at the receiver and its ARQ

feedback at the transmitter. When the discard

message is sent immediately, the feedback from the

receiver will not convey as to whether the block is

really discarded or not As TCP-WLAware need to

send a feedback to TCP sender about the loss, first it

has to confirm the loss. This paper defines a new

ACK type, referred to as Selective NACK which can

be sent after receiving a discard message when the

block is really discarded. ARQ feedback IE with

this new type can be sent.

When a discard message is received, the

receiver checks if the block is already received. If

so, the receiver sends ARQ_FEEDBACK_IE with

selective ACK. Otherwise, ARQ receiver removes

the received other fragments of the SDU from the

queue and then sends a NACK of type 5 to confirm

the discarding which is shown in Table 1. The

modified ARQ TX block state sequence is shown in

Fig 4.

Table 1 ARQ feedback IE format with the added

new type

Syntax Size

(bits)

Notes

ARQ_Feedback

_IE(LAST) {

variab

le

 CID 16 The ID of the

connection being

referenced

 LAST 1 0 – More ARQ

Feedback IE in the list

1 – Last ARQ Feedback

IE in the list

 ACK Type 3 0x0 – Selective ACK

entry

0x1 – Cumulative ACK

entry

0x2 – Cumulative with

Selective ACK entry

0x3 – Cumulative ACK

with Block Sequence

ACK entry

0x5 – Selective NACK

entry

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 442 Issue 12, Volume 11, December 2012

Fig.4 Modified ARQ TX block state sequence

On receiving NACK of type 5, the MAC sender

sends a feedback to the TCP sender. For uplink

traffic, the TCP sender is in the local host and for

downlink traffic, TCP sender in located in the actual

source host. The feedback contains two fields,

arq_retransmit, and arq_seq_. arq_retransmit is a

flag that indicates the segment loss and arq_seq_

holds the sequence number of the lost segment.

TCP-WLAware uses the reserved bits and sequence

number fields present in the TCP header to convey

the feedback.

TCP sender then enters MAC drop recovery

procedure. The modifications to the TCP-NewReno

algorithm at the various steps are:

1. If the received packet contains an indication that

a packet is dropped by the MAC layer and if the

sequence number is greater than last received

acknowledgment, store the sequence number of

the dropped packet in “arq_recover_list_” and

the current instance of time in

“arq_recover_time_list” and resend the

segment lost. If RTT measurement is active for

this segment, disable it. Reset the retransmission

timer.

2. When invoking fast retransmit for any of the

packets in the arq_recover_list_, all the

duplicate acknowledgments must have arrived

after the respective arq_recover_time_list + rtt.

When all such duplicates have been received,

remove the segment from the arq_recover_list_

and then invoke fast retransmit.

3. When a full ACK arrives, that acknowledges

new data, clear the entries in

arq_recover_time_list and arq_recover_list_

that are covered by the new acknowledgment

and exit the MAC drop recovery procedure, if

the list is empty.

4. When a partial acknowledgment is received,

remove the entries in the arq_recover_time_list

and arq_recover_list_ that are covered by this

acknowledgment and invoke the partial

acknowledgment procedure, only if the first

unacknowledged segment is not in the

arq_recover_list_.

5. After a retransmit timeout, if the sender is in the

MAC drop recovery procedure, exit clearing

arq_recover_list_& arq_recover_time_list.

4 Simulation Results
We used NS-2 WiMAX Simulator Release 2.6

provided by the WiMAX forum [20] to construct a

WiMAX network with one cell. This version tries to

send a block, infinite number of times and hence no

discards. To minimize delay and buffer sizes,

truncated ARQ has been adapted in practice. Hence

we extended the simulator by making the MAC

layer to drop the block after the violation of

ARQ_BLOCK_LIFETIME. Instead of modelling

WiMAX's timer based ARQ retransmission

management, we considered a maximal

retransmission count, arq_max_retries. This paper

studies the change in the congestion window (cwnd)

size, as cwnd indicates if fast recovery is applied.

The parameters used in the simulation are reported

in Table 2 and the simulation topology is shown in

Fig.5.

Fig. 5 Simulation topology

CASE 1: TCP -NewReno / TCP-WLAware

without wired errors
First we observed the change in cwnd with time

with TCP-NewReno as the sender agent. The

variation of cwnd is shown in Fig.6. There are no

drops in the wired network and wireless loss model

uses a uniform distribution with an error rate of 0.15

to randomly drop packets. There had been only one

instance of evoking NewReno's fast recovery in the

total duration of 170 sec. Initially, when the cwnd is

small, the loss of segments 0, 2, and 3 causes time-

out and TCP enters slow-start.

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 443 Issue 12, Volume 11, December 2012

Table 2 Simulation parameters

Fig. 6 The variation of cwnd over time

Fig. 7 shows the segments sent and lost during

the simulation period. At 39.75 sec, segments 36

through 38 were dropped. These segments were all

sent in one physical frame and was dropped once

due to error. After the ARQ retransmission time

expires, MAC puts them in the retransmission

queue. Before getting a chance for transmission,

these blocks were dropped due to the expiry of

retransmission count. At 43.24 sec, the loss of

segment 36 causes TCP to enter fast recovery as the

window at that point of time is positioned at 8. As

the segments 37 and 38 were also dropped at the

same time, TCP recovers the lost segments one per

rtt applying NewReno. At 45.75 sec, segment 47

was dropped. As the cwnd was 4, there were enough

duplicate ACKs, fast recovery was evoked. At 63.48

sec, TCP enters slow-start as the segments 62-66

were dropped. As large number of segments in a

row was dropped, enough duplicates were not there

to trigger fast recovery.

This can frequently happen in 802.16 networks

as blocks from different segments may be packed in

one MAC PDU. The same scenario has happened at

139.40 sec and 162.68 sec.

Secondly, we observed that there was a change

in cwnd, when TCP-NewReno with WLAware is

chosen as the agent. In this case , whenever there is

a block drop, ARQ identifies and informs the loss to

TCP. So the congestion window grows which

maximizes the throughput. The variation of cwnd in

this case is shown in Fig. 8.

CASE 2: TCP -NewReno /TCP-WLAware

with wired errors
Then we introduced packet loss in the wired

network and studied the variation in congestion

window with TCP-NewReno as the agent. The

wired loss model uses uniform distribution with

packet loss rate of 0.1. Fig.9 shows the variation

 Fig. 7 Sequence number of the segments sent with

the lost segments

of cwnd when WLAware is not enabled and with

wired errors. Due to wireless losses, sender often

enters slow-start. Under these conditions, when a

segment is lost due to congestion or error in the

wired infrastructure, there won’t be enough

duplicates to trigger fast retransmission. So time-

out is the option for retransmission in most

situations.

Segments 8, 9 and 10 were sent in one MAC

frame and dropped due to error at 68.07 sec. Before

they get a chance for retransmission, they were

dropped due to the expiry of retry count. The

congestion window at that time was 3 and as all the

three segments were dropped, there were no

duplicates to trigger NewReno. Hence, the cwnd

drops down to 1. At 138.44 sec, segment 59 was

Parameter Value

Frame duration

packet_size

arq_block_size_

arq_max_retries

arq_retrans_time

5ms

128 bytes

32 bytes

7

80 ms

PHY

Bandwidth

FFT

Cyclic Prefix length

Modulation and coding

OFDMA

10MHz

1024

1/4

QPSK ¾

bw_req_contention_size_

request_retry_

t16_timeout_

5

2

100ms

TCP Version

Delayed ACK factor

NewReno variant

NewReno

1

slow-but-steady

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 444 Issue 12, Volume 11, December 2012

dropped in the wired network. At 139.75 sec,

segments 60, 61 were dropped in the wireless hop.

As the cwnd size at that point of time was 3, there

were no outstanding segments to trigger fast

recovery.

Fig. 8 Variation in cwnd when TCP-WLAware is

enabled.

At 157.75 sec, segment 88 was dropped in the

wireless hop. At 159.20 sec, wired network dropped

segment 91. As the cwnd size was 8, TCP could

recover segments 88 and 99 by applying NewReno's

fast recovery. This is the only instance when

NewReno could be applied during the simulation

period.

Fig.9 Change in congestion window with wired loss

when WLAware is not enabled

Then, we studied the performance of TCP-

WLAware in the presence of wired errors. TCP

recovers from all wireless losses and allows the

congestion window to grow. This growth allows

NewReno to be applied for wired losses. The

variation in congestion window is shown in Fig.10.

Wireless drops do not make any alteration to the

cwnd.

TCP-WLAware facilitates NewReno to be

applied 4 times. At 133.261 sec, 3 DUPACKs were

received for 123 and TCP applies fast recovery and

recovers 123. TCP remains in fast recovery and

receives partial ACK for 127. This triggers

NewReno's fast recovery so as to recover 127.

NewReno's fast recovery is also applied to recover

segments 138, 162, and, 204 in a similar fashion.

 Fig.10 Variation in the cwnd with wired and

wireless errors when WLAware is enabled

All the other dips in Fig.10 depict the normal

behavior of NewReno. At 25.67 sec, segment 9

dropped in the wired hop and hence the cwnd is set

to 1. Similarly, loss of segments 73 and 78 causes

slow-start. In these cases, the congestion window

size was less than 2.

At 161.69 sec, segments 173-177 were dropped

in the wireless hop and were transmitted by resetting

the retransmission timer. Segment 174 was dropped

again in the wired hop. TCP-WLAware considers

the duplicates arriving after the transmission of the

lost segment. Even though the cwnd is greater than

4, as there are no enough duplicates to trigger

NewReno, slow-start begins. The same scenario has

got repeated when segments 26, 59, and 68 were

dropped.

The losses in the wireless hop were recovered

immediately without delay and the efficiency of

NewReno is only dependent on the wired errors.

TCP -WLAware allows NewReno to be applied

in all possible wired loss scenarios by hiding the

wireless losses. Hence, the average number of

packets sent by TCP-WLAware will be more than

that of the TCP-NewReno.

5 Conclusion
In this paper, we have measured the throughput of

one FTP connection at various network loads and

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 445 Issue 12, Volume 11, December 2012

found that the maximum throughput is achieved at

different ARQ_BLOCK_LIFETIME for each

network load. Making this parameter static may

cause TCP to spuriously retransmit or time-out

often. This paper has proposed a new cross layer

feedback mechanism, which identifies wireless

losses and inform TCP. TCP recovers such losses

immediately, which normally would lead to slow-

start. This work has presumed that there is no

congestion within the wireless network, and hence

the drops are only due to errors. This work can be

extended by considering the wireless drops due to

congestion. Our future research is to improve TCP-

WLAware to distinguish wireless congestion losses

from losses caused by errors. If the loss is due to

congestion, then congestion control measures need

to taken.

References:

[1] IEEE 802.16-2005. IEEE Standard for Local

and Metropolitan Area Networks-Part 16: Air

Interface for Fixed Broadband Wireless Access

Systems, 2006.

[2] Richard Stevens. W. TCP/IP Illustrated, Volume

1- The Protocols . Pearson Education, 2005.

[3] Addisu Eshete, Andrés Arcia , David Ros and

Yuming Jiang. Impact of WiMAX Network

Asymmetry on TCP , Proceedings of the IEEE

Wireless communications & Networking

conference, 2009, 1706 – 1711.

[4] Alaa Ghaleb-Seddik , Yacine Ghamri-Doudane ,

Sidi Mohammed Senouci , Nazim Agoulmine.

Measurement of TCP computational and

communication energy cost in MANETs.

Pervasive and Mobile computing, 2011,7(1): 60-

77.

[5] Bong-Ho Kim, Jungnam Yun, Yerang Hur,

Chakchai So-In, Raj Jain & Abdel -Karim Al

Tamimi. Capacity Estimation and TCP

Performance Enhancement over Mobile

WiMAX Networks. IEEE communications

Magazine, 2009, 47(6):132-141.

[6] Byongkwon Moon & Jeonghoon Mo.

Optimizing uplink TCP-ACK transmission in

WiMAX OFDMA systems. IEEE

Communication Letters, 2008, 12(4): 256- 259.

[7] Govindan Nair et al. IEEE 802.16 Medium

Access Control and Service Provisioning. Intel

Technology Journal, 2004, 8(3), 213-228.

[8] Ji-Hoon Yun. Cross-Layer Explicit link Status

Notification to improve TCP Performance in

Wireless Networks. EURASHIP Journal on

Wireless Communication and Networking, 2009,

1-15.

[9] Jin Hwang, Sang Woo Son, & Byung Ho Rhee.

Improving TCP Performance over WiMAX

Networks Using Cross-Layer Design.

Proceedings of the 2008 Third International

Conference on Convergence and Hybrid

Information Technology, 2008(2) : 83-88.

[10] Medina, A. , Allman, M. , & Floyd, S.

Measuring the evolution of transport protocols

in the Internet. ACM SIGCOMM Computer

Communication. Rev., 2005, 35(2), 37-52.

[11] Xu K., Tian Y., & Ansari N. TCP-Jersey for

Wireless IP Communications. IEEE Journal on

Selected Areas in Communications, 2004,

22(4), 747-756.

[12] Oleg G Ivanov, Andrey S Bazhenov. Adaptive

ARQ for WiMAX networks. Proceedings of the

IEEE International Conference, 2009, Eurocon,

1284-1287.

[13] Floyd S., Henderson T., et al. (2004). RFC

3782: The NewReno Modification to TCP's Fast

Recovery Algorithm. IETF,

http://www.ietf.org/rfc/rfc3782.txt

[14] Allman, M.,V. Paxson & Stevens, W. RFC 2581

TCP Congestion Control.1999, IETF,

http://www.ietf.org/rfc/rfc25581.txt

[15] Xiang ying Yang, Muthaiah Venkatachalam, &

Shantidev Mahanty. Exploiting the MAC layer

flexibility of WiMAX to systematically enhance

TCP performance. Proceedings of the Mobile

WiMAX symposium,2007, 60-68.

[16] Vineet Srivatsava, & Mehul Motani. (2005).

Cross-Layer Design: A survey and the road

ahead”, IEEE Communication Magazine, 112-

119.

[17] Ye Tian, Kai Xu, & Nirwan Ansari. TCP in

wireless Environments: Problems and solutions.

IEEE Radio Communications,2005, 527-532.

[18] Emir Halepović, Qian Wu, Carey Williamson,

Majid Ghaderi. TCP over WiMAX: A

Measurement Study. IEEE International

symposium on Modeling, Analysis and

simulation of computers and Telecommunication

systems, MASCOTS 2008, 1-10.

[19] NS. The Network Simulator-ns-2,

http://www.isi.edu/nsnam/ns.

[20] WiMAX patch. The WiMAX Forum System

Level Simulator NS-2 MAC+PHY Add-On

for WiMAX (IEE802.16),
http://code.google.com/p/ns2-wimax-

awg/downloads/list
[21] Sayenko .A, Tykhomyrov.V, Martikainen.

H, & Alanen.O. Performance analysis of

the IEEE 802.16 ARQ mechanism.

Proceedings of the 10th ACM Symposium

on Modeling, analysis, and simulation of

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 446 Issue 12, Volume 11, December 2012

wireless and mobile systems,2007, 314-322.

[22] Hari Balakrishnan and Randy H. Katz. Explicit

Loss Notification and Wireless Web

Performance,1998, Proc. IEEE Globecom

Internet Mini-Conference, Sydney, Australia.

K.Sakthi mala received the B.Sc degree in Physics

from Bharathiar University, India in 1986 and M.Sc

Applied Physics and Computer Electronics from

Bharathidasan University, and M.Phil in Computer

science from Bharathiar University, India. She is

working towards the Ph.D degree in Science and

Humanities at Anna University Chennai, India. Her

current research interests include wireless TCP and

Wireless MAN.

Dr. P. Navaneethan received the BE in Electrical

and Electronics degree from University of Madras

in 1981and ME degree in Applied Electronics from

Anna University in 1983 and PhD in Computer

science from Indian Institute of Science, Bangalore

in 1991. He is currently working as Professor &

Head of Electrical And Electronics Engineering

Department, PSG College of Technology, India. He

had presented about 15 International and National

conference papers. His current research interests

include the various aspects of computer networks,

computer architecture and multilingual computing.

WSEAS TRANSACTIONS on COMMUNICATIONS K. Sakthi Mala, P. Navaneethan

E-ISSN: 2224-2864 447 Issue 12, Volume 11, December 2012

